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ABSTRACT

The ideal penetration limits for localized, non-invasive heating
of tumors at the center of a volume of muscle tissue are
determined. Using both an integral formulation and a modal
approach, the optimum surface phase and amplitude source

distributions

which prevent excessive heating of healthy,
intervening tissue are derived.
INTRODUCTION

In non-invasive microwave hyperthermia cancer therapy, it is
important to know the penetration depth limits of radiation
which produces local power maxima. For treatment which
provides heat at depth at the site of a localized tumor,
overheating intervening tissue must be avoided. Two questions
are vital to understanding the possiblities and limitations of this
type of treatment: “What is the maximum radius of a sphere of
biological tissue for which an optimally distributed source will

generate as much power at its center as at its surface?" and

"What is this optimum source distribution?"

LOSSY SPHERE FIELD SOLUTIONS

A spherical geometry allows the greatest exposure of a focal
target point to sources on the surface for a given minimum depth
of lossy medium. Thus the sphere represents the best possible
non-invasive hyperthermia configuration.  Although medical
applications of heating spherical volumes are limited to only
head and whole body, the knowledge gained from studying this
best-case heating geometry will aid in the design of more

practical hyperthermia systems.
The development of the optimal solution uses both the surface-

current integration formula and the spherical harmonic solutions

to the wave equation.
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The greatest constructive interference at the center of a sphere
results when the polarizations of all the surface sources are
parallel; pointing in, say, the z-direction, as shown in Figure 1.
Any  additional symmetrical radial component (or,
correspondingly, polar-angle component) ends up cancelling itself
in the center, and any unsymmetrical components perpendicular

to z obviously do not contribute to the z-component.

Integrating these parallel currents on a spherical surface of
radius R is straightforward for a uniform distribution J(r’) =
8(r-R) &.. Without loss of generality, choose observation points
along the z-axis, which lie a distance r from the sphere’s center.
Using the law of cosines for the source to observer distance in the

Green’s function integral® yields:
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The resulting power in a sphere of muscle tissue, normalized to
that at the center, is plotted as a function of radius at 6 = =/2
in Figure 2 for some of the important hyperthermia frequencies.
For these plots, k = # - jo, and the values of o and § were
obtained for the various frequencies using experimentally derived
values of dielectric constant and conduct,ivityQ. It is the
intersections with unity that determine the maximum allowable
radius of tissue that can be heated without overheating the

surface.

MODAL ANALYSIS

Although the uniform surface current distribution intuitively
seems optimal, additional improvement becomes apparent from a
modal viewpoint. The harmonics of a sphere produce electric

field as represented by2:
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The key feature in this equation is that since the spherical
Bessel functions, 7, vary as (kr)", the only mode which
contributes to field in the center, r = 0, is the n == 1 mode. The
Legendre polynomials F(z) and P/(xz) evaluate to 1 and z
respectively, and so it becomes evident that the first mode
corresponds to the uniform surface current case. However, since
the higher order modes approach O in the center, they can be
used to counteract the large, undesirable values of field
elsewhere. Specifically, a distribution can be synthesized from
modes with appropriate chosen phase and amplitude to partially
cancel the field at the surface and thereby increase the maximum

allowable sphere size.

The distribution of power on the surface of a large, lossy
sphere for uniform current varies as sinzﬂ, as seen from equation
(1) with n == 1 and by recalling j,(kR) < <j (kR) for kR>>1.
Reducing the surface peak at 7/2 is accomplished by adding the
n = 2 and the n = 3 modes, which contain sin(36) and sin(59)
terms, such that the surface power (rather than current) is more
nearly a uniform function of 4. With the object of minimizing
the maximum surface value of the sum of modes, the coefficients
B, and B, of the function sin(f)+B,sin(30)+B,sin(56) which
produce 3 equal peaks are sought An iterative method is used
to find the solutions to this transendental equation, which results
in B1 = .2355, 82 == .0640. Additional, higher order terms
could be used, but the reduction in power would only be in the
order of .005, not warranting the added computational

complexity.

Combining the first three modes using equation (2) with the A
chosen to normal the Bessel function values at R, to combine the
nth-order Legendre polynomial values, and to normalize the the
power at the center, results in the surface power distribution
shown in Figure 3. Plotted as a function of 4, it is observed that
there is a sizeable reduction of peak power and that the power is
more evenly spread across the surface. Also, it is clear that the
fifth order ripple is very close to ideal. The normalized
maximum surface power is lowered by a factor of 0 78. Figure 4

plots the power as a function of radius at § = /2 for the sum of

3 modes, for the same frequencies as in figure (2). Comparing
these two figures shows maximum radius increases of 1.72, 0.84,
0.57, and 0.32 cm for frequencies of 100, 433, 915, and 2450
MHz, respectively.

CONCLUSION

The dimensions of the largest convex volume of muscle tissue
which can be heated non-invasively, without overheating the
surface, has been determined for the standard electromagnetic
hyperthermia frequencies. These limits are the theoretical best
cases (within 0.5%): it is not possible to improve on them by
altering the surface phase or amplitude distribution. For other
tissue geometries, the maximum penetration depth will, of

course, be lower

Although penetration depth increases with decreasing frequency
below 433 MHz., the resolution of the focal spot at the center
decreases.  However, due to the non-linear dependence of
complex dielectric constant on frequency, increasing the
frequency does yield an increase in penetration depth for a
limited range, as shown by the plot of 915 MHz. power curves.
For 433 MHz. «/f == 0.396, whereas for 915 MHz. it is 0 231.
There is a small advantage to using a more uniform power
surface distribution than the uniform current ditribution. The
improvements are more pronounced for the lower frequencies,
since wavelengths are longer, and the slopes of the power curves

are shallower.
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FIGURE 1. Currents polarized in the z-direction on the surface of a sphere, and the resulting maximum

constructive interference of electric field at the center.
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FIGURE 3. Surface power as a function of § for single mode (uniform current), and three mode

(approximate uniform power) distributions.
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FIGURE 2. Dissipated power in a sphere of muscle tissue as a function of radius for four standard

hyperthermia frequencies: uniform current distribution.
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FIGURE 4. Power in a sphere of muscle tissue for approximate uniform surface power distribution.
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