
I-3
OPTIMAL SOURCE DISTRIBUTION FOR MAXIMUM POWER

DISSIPATION AT THE CENTER OF A LOSSY SPHERE

Carey M Rappaport and Frederic R. Morgenthaler

Massachusetts Institute of Technology

Cambridge, Ma 01239

ABSTRACT

The ideal penetration limits for localized, non-invasive heating

of tumors at the center of a volume of muscle tissue are

determined. Using both an integral formulation and a modal

approach, the optimum surface phaae and amplitude source

distributions which prevent excessive heating of healthy,

intervening tissue are derived.

INTRODUCTION

The greatest constructive interference at the center of a sphere

results when the polarizations of all the surface sources are

parallel: pointing in, say, the z-direction, as shown in Figure 1.

Auy additional symmetrical radial component (or,

correspondingly, polar-angle component) ends up canceling itself

in the center, and any unsymmetrical components perpendicular

to z obviously do not contribute to the z-component

Integrating these parallel currents on a spherical surface of

radius R is straightforward for a uniform distribution J(r’) =

6(r-R) i. Without loss of generality, choose observation points

along the z-axis, which lie a distance r from the sphere’s center.

In non-invasive microwave hyperthermia cancer therapy, it k Using the law of cosines for the source to observer distance in the

important to know the penetration depth limits of radiation Green’s function integrall yields:

which produces local power maxima. For treatment which

provides heat at depth at the site of a localized tumor,

overheating intervening tissue must be avoided. Two questions — #kdR2+r2-2.Rccx g

E = –jW(i+ ~ VV).Jn d~! J2” d@R2&Yp
are vital to understanding the possibilities and limitations of this ~2 o 0

~ (1)

type of treatment: “What is the maximum radius of a sphere of
4n dR2+r2–2.Rcm.#

biological tissue for which an optimally distributed source will

generate as much power at its center as at its surface?” and

!,What is this optimum source distribution?”

LOSSY SPHERE FIELD SOLUTIONS

A spherical geometry allows the greatest exposure of a focal

target point to sources on the surface for a given minimum depth

of lossy medium. Thus the sphere represents the best possible

non-invasive hyperthermia configuration. Although medical

applications of heating spherical volumes are limited to only

head and whole body, the knowledge gained from studying thk

best-case heating geometry will aid in the design of more

practical hyperthermia systems.

The development of the optimal solution uses both the surface-

current integration formula and the spherical harmonic solutions

to the wave equation.

The resulting power in a sphere of muscle tissue, normalized to

that at the center, is plotted as a function of radius at O = ir/2

in Figure 2 for some of the important hyperthermia frequencies.

For these plots, k = f3 - jcr, and the values of cr and @ were

obtained for the various frequencies using experimentally derived

values of dielectric constant and conductivity. It is the

intersections with unity that determine the maximum allowable

radius of tissue that can be heated without overheating the

surface.

MODAL ANALYSIS

Although the uniform surface current distribution intuitively

seems optimal, additional improvement becomes apparent from a

modal viewpoint. The harmonics of a sphere produce electric

field as represented by2:
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3 modes, for the same frequencies as in figure (2). Comparing

E= F An
n(n+l)
~ jn(kr) Pn(coso) (2) these two figures shows maximum radius increases of 1.72, 0.84,

0.57, and 0.32 cm for frequencies of 100, 433, 915, and 2450

+ ~ An [jn_l(kr) – ; jn(kr)] [n cosoPn (cod) – r&n_l(coso)] (+) MHz, respectively.

CONCLUSION

The key feature in this equation is that since the spherical

Bessel functions, jn, vary as (kr)n, the only mode which

contributes to field in the center, r = O, k the n = 1 mode. The

Legendre polynomials PO(Z) and PI(x) evaluate to 1 and x

respectively, and so it becomes evident that the first mode

corresponds to the uniform surface current case. However, since

the higher order modes approach O in the center, they can be

used to counteract the large, undesirable values of field

elsewhere. Specifically, a distribution can be synthesized from

modes with appropriate chosen phase and amplitude to partially

cancel the field at the surface and thereby increase the maximum

allowable sphere size.

The distribution of power on the surface of a large, 10SSY

sphere for uniform current varies as sin2f?, as seen from equation

(1) with n = 1 and by recalling jl(kR) < <jo(!d?) for kR> >1.

Reducing the surface peak at n/2 is accomplished by adding the

n = 2 and the n = 3 modes, which contain sir2(30) and sin(50)

terms, such that the surface power (rather than current) is more

nearly a uniform function of 0. With the object of minimizing

the maximum surface value of the sum of modes, the coefficients

B1 and B2 of the function sin(0) +131sin(30)+B2sin(50) which

produce 3 equal peaks are sought An iterative method is used

to find the solutions to this transcendental equation, which results

in B1 = .2355, B2 = .0640. Additional, higher order terms

could be used, but the reduction in power would only be in the

order of .005, not warranting the added computational

complexity.

Combining the first three modes using equation (2) with the An

chosen to normal the Bessel function values at R, to combine the

nth-order Legendre polynomial values, and to normalize the the

power at the center, results in the surface power distribution

shown in Figure 3. Plotted as a function of 0, it is observed that

there is a sizeable reduction of peak power and that the power is

more evenly spread across the surface. Also, it is clear that the

fifth order ripple is very close to ideal. The normalized

maximum surface power is lowered by a factor of O 78. Figure 4

plots the power as a function of radius at 6 = rT/2 for the sum of

The dimensions of the largest convex volume of muscle tissue

which can be heated non-invaaively, without overheating the

surface, has been determined for the standard electromagnetic

hyperthermia frequencies. These limits are the theoretical best

cases (within 0.5%): it is not possible to improve on them by

altering the surface phase or amplitude distribution. For other

tissue geometries, the maximum penetration depth will, of

course, be lower

Although penetration depth increases with decreasing frequency

below 433 MHz., the resolution of the focal spot at the center

decreases. However, due to the non-linear dependence of

complex dielectric constant on frequency, increasing the

frequency does yield an increase m penetration depth for a

limited range, as shown by the plot of 915 MHz. power curves.

For 433 MHz. a/,6 = 0.396, whereas for 915 MHz. it is O 231.

There is a small advantage to using a more uniform power

surface distribution than the umform current distribution. The

improvements are more pronounced for the lower frequencies,

since wavelengths are longer, and the slopes of the power curves

are shallower.
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FIGURE 1. Currents polarized in the z-direction on the surface of a sphere, and the resulting maximum

constructive interference of electric field at the center.
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FIGURE 3. Surface power as a function of 0 for single mode (uniform current), and three mode

(approximate uniform power) distributions.
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FIGURE 2. Dksipated power in a sphere of muscle tissue w a function of radius for four standard

hyperthermia frequencies: uniform current distribution.
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FIGURE 4. Power in a sphere of muscle tissue for approximate uniform surface power distribution.
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